Core Spatial Data Analysis: Introductory GIS with R and QGIS
- Description
- Curriculum
- FAQ
- Reviews
MASTER SPATIAL DATA ANALYSIS IN R & QGIS: HANDS ON TRAINING WITH A REAL SPATIAL DATA PROJECT!Ā
Do you find GIS & Spatial Data books & manuals too vague, expensive & not practical and looking for a course that takes you by hand, teaches you all the concepts, and get you started on a real life project?
Or perhaps you wantĀ to save time and learn how toĀ automate some of the most common GIS tasks?
I’m very excited you found my spatial data analysis course.Ā My course provides a foundation to carry out PRACTICAL, real-life spatial data analysis tasks in popular and FREE software frameworks.Ā
My name isĀ MINERVA SINGHĀ and i am an Oxford University MPhil (Geography and Environment) graduate. I amĀ currently pursuing a PhD at Cambridge University (Tropical Ecology and Conservation). I have several yearsĀ ofĀ experience in analyzing real life spatial data from different sources and producing publications for international peer reviewed journals.
In this course, actual spatial data from the Tam Dao National Park in Vietnam will be used to give a practical hands-on experience of working with real life spatial data and understanding what kind of questions spatial data can help us answer. The underlying motivation for the course is to ensure you can put spatial data analysis into practice today. Start analyzing spatial data for your own projects, whatever your skill level and IMPRESS your potential employers with an actual example of your spatial data analysis abilities.
This is a core course in spatial data analysis, i.e. we will focus on learning the most important and widely encountered spatial data analysis tasks in both R and QGIS
It is a practical, hands-on course, i.e. we will spend a tiny amount of time dealing with some of the theoretical concepts related to spatial data analysis. However, majority of the course will focus on working with the spatial data from the Tam Dao National Park, Vietnam. After each video you will learn a new concept or technique which you mayĀ apply to your own projects.
TAKE ACTION TODAY! I will personally support you and ensure your experience with thisĀ course is a success.
-
1Introduction: What is the Course About and Meet your Instructor
This lecture presents a brief introduction to what the course is about and the course instructor.Ā
-
2Resources and Software to be Downloaded
Link to data used in this course and code files. Brief description of the software and packages to be installed prior to staring
-
3What is Spatial Data Analysis?
In this section the students are going to be introduced to spatial/geo-spatial data and how they differ from GIS. The students will then be introduced to the project they are going to work with, along with an introductions of the different questions they can answer through spatial data analysis. We will talk about the important applications of spatial data analysis, sources of free data and tools to be used in this course (R and QGIS). Briefly present the different softwares and packages that need to be installed.
-
4Quick Introduction to Some Concepts Related to Spatial Data
This lecture will introduce some of the most common spatial data concepts that we will encounter most frequently. I will touch upon Coordinate reference systems and projections. I will also briefly introduce Raster data, vector data and point data
-
5Conclusions to Section 1
In this lecture we will quickly reiterate the things we have learnt in the previous lectures. By now we have installed the both QGIS, R and the basic R packages needed for spatial data analysis. We are now familiar with terms such as latitude-longitude, coordinates and know the difference between raster and vector data. We are acquainted with our project study site and some of the questions spatial data analysis can help us answer. If we are all comfortable with this, its time for a quiz and next sections
-
6Section 1 Quiz
A few questions to make sure you are up to speed on the topics covered in Section 1
-
7Read in Raster Data Using QGIS
Briefly demonstrate how raster data (with different extensions) and of different extents can be read in to QGIS
-
8Read in Raster Data in R
-
9Modify CRS of Raster Bands
In this lecture we will see how we can convert the coordinates of raster data from UTM to Latitude-longitude and vice versa.
-
10Modify Raster Stack in R
-
11Plot Multiple Bands as false color composites
-
12Band Arithmetic in R
In this lecture we will see how to apply arithmetic operations to raster bands. We will also compute NDVI in R
-
13Band Arithmetic in QGIS
-
14Reclassify to Categorical Raster
In this lecture we will see how to convert continuous value raster data to categorical raster, i.e. assign unique categories to a given range of raster values
-
15Categorical Raster Statistics in R
We will be introduced to an R package- SDMTools. The functions of this package can be used for a number of landscape ecology related computations. In this lecture, we will see how the attributes relating to different raster classes or categories maybe computed in R
-
16Categorical Raster Statistics in QGIS
In this lecture we will see how landscape level statistics such as percentage land-cover, patch related statistics can be computed in QGIS. This lecture will also introduce a very useful QGIS Plugin- Lecos or Landscape Ecology.
-
17Resampling Raster Data in R
In this lecture we will see how the pixel size (and extent) of a given raster can be modified using another raster as a baseline
-
18Clipping Raster Data in R
In this lecture we will see how to extract the given portion of a raster or clip a raster using polygons in R.
-
19Clipping Rasters in QGIS
-
20Deriving Topographic Products in R
In this lecture we will how a Digital Elevation Model can be examined within R. Further we will see how to derive topographic products such as slope, aspect from elevation data
-
21Topographic Calculations in QGIS
-
22Basic Statistics Calculations on Rasters in R
In this lecture, we will see how to carry out basic statistical operations on raster data in R; including extracting descreptive statistics, correlation and linear regression
-
23Conclusions to Section 2
We will quickly discuss the things we have learnt so far in section 2 before moving to a brief quiz on raster data analysis
-
24Section 2 Quiz
What is tthe resolution of Landsat data in metres?
-
25Read Vector Data in QGIS
In this lecture we will see how we can read in vector data using QGIS
-
26Read Vector Data in R
In this lecture we will explore the different functions and packages that let us read in vector data in R
-
27Explore Shapefile Attributes in R
In this lecture we will explore and visulaize shapefile attributes in R
-
28Basic Visualizations with Shapefiles in R
In this lecture we will explore basic map visualizations using in-built spatial data of R with our own shapefiles
-
29Subset and Split Shapefiles in R
In this lecture we will see how to isolate specific portions of a shapefile by sub-setting and split a shapefile using a unique attribute
-
30Splitting and Merging Shapefiles in QGIS
In this lecture we will see how to split and merge shapefiles based on a given unique attribute in QGIS
-
31Basic Analysis on Shapefiles in RIn this lecture we will learn to calculate important attributes such as area of shapefile, length and carry out operations such as intersection of different shapefiles
-
32Conclusions to Section 3
In this lecture we will quickly reiterate the things we have learn in Section 3
-
33Section 3 Quiz
In this quiz, we will quickly reiterate the concepts we learnt in Section 3
Social Network